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Abstract: The present study deals with spatially homogeneous and anisotropic Kantowski-Sachs 

Cosmological model with a minimally coupled scalar field in Einstein's theory of gravitation. To get a 

determinate model of the universe, we assume that the scalar expansion () of the model is proportional 

to the shear (). This condition leads to A = Bm, where  and m are constants. Various physical and 

geometical properties of the model have also been discussed. 
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1. Introduction 

Usually, it is assumed that the universe is filled with a perfect fluid. But observations 

suggest that cosmological dynamics cannot be fully explained by this standard matter. 

The observational results lead to the search of some kinds of exotic matter which would 

generate sufficient negative pressure to drive the late-time cosmic acceleration. One 

such exotic matter is the scalar field which provides the necessary negative pressure 

causing acceleration [6,21]. Thus, the scalar field cosmological models are of great 

importance in the study of the early universe, particularly in the investigation of 

inflation. The recent discovery of cosmic acceleration [1,13,17,19,22] has stimulated 

the interest to study cosmological models based on scalar fields. The cosmological 

models based on scalar fields have been investigated  by Guth [12] and Frieman et. al. 

[11] to explain the possible early inflationary scenarios as well as the dark matter 

problem. 

The dynamics of the evolution of the universe is often realized by scalar field 

with a proper scalar potential. The self-interacting potential can act as an effective 

cosmological constant which derives a period of inflation. It depends on the specific 

form of the potential as a function of scalar field. The scalar field with an exponential 

potential is a strong candidate for dark matter in spiral galaxies and is consistent with 

observations of current accelerated expansion of the universe [15,16]. Many authors 

[5,7,20] have studied scalar field cosmological models with an exponential scalar 

potential within general relativity. Several researchers [2-4,8-10,14] have studied the 

scalar field cosmology in Friedmann-Roberston-Walker (FRW) model with different 

forms of scalar potentials like flat, constant and exponential potentials. Recently, Singh 
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et al. [23] have studied minimally coupled scalar field cosmology in anisotropic 

cosmological model. 

Motivated by the above discussions, in this paper, we have studied Kantowski-

Sachs cosmological model with a minimally coupled scalar field in general theory of 

relativity. The outline of the paper is as follows. The metric and the field equations are 

presented in Section 2. Section 3 deals with the solutions of the field equations. In 

Section 4, we describe some physical and geometric properties of the model. Finally, 

conclusions are given in section 5. 

2. The Metric and Field Equations 

 we consider the homogeneous and anisotropic space-time described by Kantowski-

Sachs metric in the form 

 22222222 sin  ddBdrAdtds  ,                                          (1) 

where the metric potentials A and B are functions of cosmic time t alone. 

Kantowski-Sachs class of metric represents homogeneous but anisotropically 

expanding (contracting) cosmologies and provides models where the effect of 

anisotropy can be estimated and compared with FRW class of cosmologies [24]. 

In the case of gravity minimally coupled to a scalar field potential )(V , the 

Lagrangian L is  
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which on variation of L with respect to dynamical fields lead to Einstein's field 

equations (in gravitational units 18  cG ) 
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with energy-momentum tensor 
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where comma and semicolon denotes ordinary and covariant differentiation 

respectively. The function  depends on cosmic time t only due to homogeneity.  

In co-moving coordinate system, we have from (4) 
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The Einstein's field equations (3) with he help of (6) for the metric (1) are given by 
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and the equation (5) for the scalar field takes the form 
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Here the overhead dot denotes differentiation with respect to cosmic time t. 

We define the following parameters to be used in solving Einstein's field equations for 

the metric (1). 

The average scale factor S, the volume scale factor V and the generalized mean 

Hubble's parameter H are defined as 
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An important observational quantity is the deceleration parameter q, which is defined 

as 

.
2S

SS
q




          (14) 

The expansion scalar , the shear scalar  and the average anisotrophy parameter Am 

are defined as  
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3. Solution of the Field Equations 

 We try to solve the field equations by choosing an additional relation in the form of 

some physical condition signifying some particular scenario. For spatially 

homogeneous metric, the normal congruence to the homogeneous hyper surface 

satisfies the condition 



 constant. This condition leads to 

,mBA           (18) 

where  is an integrating constant and m > 1. 

Subtracting (8) from (7) and using (18) in the resulting equation, we obtain 
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Integrating, equation (20), we obtain 
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where l  is a constant of integration. 

Using (18) and (21), the line element (1) reduces to 
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The metric (22) can be transformed through a proper choice of coordinates to the form 
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4. Some Physical and Geometrical Properties 

The expressions for the scalar of expansion (), shear scalar (), the average Hubble's 

parameter (H), deceleration parameter (q), proper volume (V) and the average 

anisotropy parameter Am for the model (23) are respectively given by 
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The scalar field () and the scalar field potential V() are, respectively given by 
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where o is an integrating constant. 

 
2

1

1 Tm

m
V 










 .       (31) 

To find determinate solution of equation (30), we assume  l = 0, which yields 
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In this case, the scalar field potential V() takes the form 
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The mathematical analysis of derived Kantowski-Sachs model are as follows 
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 It is observed that the spatial volume is zero and the expansion scalar is infinite 

at T = 0, which shows that the universe starts evolving with zero volume with 

infinite rate of expansion. The universe exhibits an initial singularity of POINT 

type at T = 0.  

 The physical quantities , , and H start off with extremely large values and 

continuously decrease with increase of time and tend to zero as T  . 

 From equation (27), we observe that as T  0, q  2 (> 0), therefore the model 

decelerates in the standard way. It deserves mention that the decelerating 

models are also consistent with the recent CMB observations made by WMAP 

as well as the high redshift supernovae Ia data including SN199ff at Z = 1.7559 

[25]. Also, T implies that q -1 (<0) which shows that the present universe 

is accelerating. This facts is supported by the recent observations of SNe Ia [17-

19 ]. 

 We observe that  10
)2(3

)1(
lim 




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
mas

m

m

T 


, the model never 

approach to isotropy at any time.  

 The mean anisotropy parameter is uniform throughout the whole expansion of 

the universe. 

 We observe that at the beginning i.e. at T = 0,   - . It increases with time 

and tends to + at T  . Thus, the Kinetic energy vanishes at the end of the 

evolution (an infinite expansion). For negative   , the potential  V() is 

unbounded from below, one might expect that one can always construct 

negative energy solutions. 

5. Conclusions  

We have presented Kantowski-Sachs cosmological model with a minimally coupled 

scalar field in Einstein's theory of gravitation. The study showed that the universe was 

decelerating in the past and accelerating at present time. At the beginning of the 

evolution i.e. at T = 0, the scalar field   - . During the evolution,  increases and at 

the end of the evolution (an infinite expansion) when T  , it tends to + . The 

Kinetic energy vanishes at T . The potential V () start off with extremely large 

negative value and tends to zero at late-time. For large values of T, the scalar of 

expansion and shear scalar tend to zero but initially both are infinite. The spatial 

volume becomes infinite and the physical as well as dynamical quantities tend to zero. 
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The model has a point type singularity at T = 0 and does not approach the isotropy for 

large value of T. 
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